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The rapid digital transformation of higher education has accelerated the adoption of smart campus
technologies integrating artificial intelligence (Al), Internet of Things (IoT), and cloud computing. While existing
initiatives often emphasize operational efficiency and infrastructure optimization, limited attention has been given
to building human-centered smart campuses that prioritize student engagement, well-being, and academic success.
This study investigates the role of Al-powered analytics in shaping adaptive, inclusive, and student-focused
campus ecosystems, with an observational study conducted at De La Salle University (DLSU), Manila,
Philippines. Al-driven analytics were deployed to process multi-source datasets, including IoT-enabled classroom
sensors, learning management system (LMS) activity logs, and student survey feedback. The system generated
predictive insights to identify at-risk learners, support personalized learning pathways, and recommend
interventions for improved academic outcomes. Preliminary findings from the DLSU pilot revealed a 19%
increase in course participation and a 12% reduction in dropout risk among vulnerable student groups.
Additionally, real-time analytics enhanced campus services by optimizing space utilization, energy efficiency,
and scheduling flexibility, indirectly improving student comfort and productivity. The results suggest that Al-
powered analytics extend the smart campus paradigm beyond efficiency, enabling higher education institutions to
foster human-centered learning environments that integrate inclusivity, well-being, and sustainability. By
demonstrating how data-driven systems can support both academic and non-academic aspects of student life, this
research positions Al as not only a technological enabler but also a catalyst for equitable and student-centered
digital transformation in higher education.
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The rapid digitalization of higher education has transformed universities into complex ecosystems
where technology, data, and human interactions converge[1]. Smart campuses[2][3][4], supported by
the integration of the Internet of Things (IoT)[5][6], cloud computing, and artificial intelligence (Al),
have emerged as a strategic response to the growing demand for more adaptive, sustainable, and student-
centered learning environments [1], [2]. These campuses not only aim to optimize infrastructure and
operations but also to enhance teaching, learning, and overall student well-being.
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In recent years, Al-powered analytics has become one of the most critical enablers of smart campus
transformation. By leveraging vast streams of real-time data, ranging from classroom IoT sensors to
learning management system (LMS) activity logs, Al enables universities to derive predictive insights,
personalize learning experiences, and improve decision-making [3]. More importantly, Al provides the
opportunity to reframe the smart campus paradigm from a technology-driven model to a human-
centered ecosystem one that emphasizes inclusivity, engagement, and the holistic success of students

[4], [5].

De La Salle University (DLSU), Manila, Philippines, offers an exemplary case for investigating the
human-centered application of smart campus technologies[7][8][9][10]. As one of the leading higher
education institutions in Southeast Asia, DLSU has actively pursued digital transformation initiatives
to strengthen academic delivery, optimize resource management, and foster student success. However,
like many institutions, the challenge remains in ensuring that technological innovation aligns with the
human aspects of learning, such as equity, well-being, and personalized support.

This study explores the role of Al-powered analytics in building a human-centered smart campus
framework at DLSU. Specifically, it examines how data-driven insights can support early identification
of at-risk learners[11][12], improve student engagement, and enhance non-academic campus services
that contribute to student life. By integrating academic, behavioral, and environmental data, this
research demonstrates the potential of Al as a catalyst for creating inclusive, adaptive, and sustainable
smart campuses.

The remainder of this paper is structured as follows: Section II reviews related works on Al and smart
campus development; Section III describes the methodology employed in the study; Section IV presents
the results and discussion; and Section V concludes with key findings and future directions.

RELATED WORK

The concept of a smart campus has gained increasing attention in higher education as universities adopt
digital technologies to enhance operational efficiency, sustainability, and student learning experiences.
The integration of the Internet of Things (IoT)[13], cloud computing[14], and artificial intelligence (Al)
has been widely recognized as a foundation for building smart learning environments[15][16]. Early
studies focused on the technical aspects of infrastructure optimization, including smart classrooms,
energy-efficient buildings, and automated campus services[17]. While these developments improved
resource utilization, they often overlooked the human-centered dimension of campus life[18].

Al-powered analytics has emerged as a promising approach to bridging this gap. [15] highlighted the
role of learning analytics in providing actionable insights for teaching and learning. Subsequent research
demonstrated the use of predictive models to identify at-risk learners, recommend personalized learning
pathways, and support data-driven academic advising. More recent studies have extended the scope of
analytics beyond academics, applying Al to student well-being, campus security[19], and space
management[20]. These contributions suggest that Al has the potential to create holistic support systems
that foster both academic performance and student engagement.

In parallel, scholars have emphasized the importance of human-centered design in higher education
technology adoption. A human-centered smart campus prioritizes inclusivity, equity, and
adaptability[21], ensuring that digital transformation efforts align with the diverse needs of students and
faculty [22]. For instance, research on student engagement underscores the value of real-time feedback,
personalized support, and inclusive learning environments in improving academic outcomes [10].
Integrating these principles into smart campus development ensures that technology serves as a
facilitator of human success rather than a barrier.

Despite these advancements, there remains a need for empirical research that situates Al-powered

analytics within the broader context of human-centered smart campuses, especially in Southeast Asian
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higher education institutions. Most existing studies are concentrated in North America, Europe, and
parts of East Asia, leaving a research gap in exploring how Al can support inclusivity and student well-
being in developing regions. This study contributes to filling that gap by examining the implementation
of Al-driven analytics at De La Salle University (DLSU), Manila, where digital transformation efforts
are actively reshaping both academic and non-academic aspects of campus life.

METHODS
A. Research Design

This study adopted a mixed-methods research design to investigate how Al-powered analytics can
contribute to building a human-centered smart campus. The approach combined quantitative data
analysis (from loT sensors, LMS logs, and institutional records) with qualitative feedback (from student
surveys and faculty interviews). The integration of both perspectives allowed for a comprehensive
evaluation of the effectiveness and inclusivity of Al-driven interventions at De La Salle University
(DLSU).

B. Data Sources
Three main data streams were collected during the observation period:

1. IoT Sensor Data: Data from smart classrooms and campus facilities, including attendance
tracking via RFID, room occupancy rates, and environmental conditions (temperature, lighting,
energy usage).

2. Learning Management System (LMS) Logs: Activity data from the university’s online learning
platform, such as log-in frequency, assignment submissions, forum participation, and quiz
performance.

3. Student and Faculty Feedback: Survey instruments and semi-structured interviews were
conducted with 320 students and 45 faculty members across five colleges at DLSU to assess
perceptions of usability, inclusivity, and overall effectiveness.

g2

LMS Logs Student
Activity data from Feedback
Data from smart the university’s Survey instruments
classrooms and online learning and semi-structured
campus facilities, platform, such as interviews were
including attendance log-in frequency, conducted with
tracking via RFID, assignment students and faculty
room occupancy submissions, forum members to assess
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environmental quiz performance. usability, inclusivity,
conditions. and overall

effectiveness.

Figure 1. Data Source Collection
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C. Al-Powered Analytics Framework

An Al-driven analytics framework was implemented to process and interpret multi-source datasets.
The framework consisted of three layers:

— Data Integration Layer: Aggregated data from loT sensors, LMS logs, and survey instruments
into a centralized cloud-based platform.

— Al & Predictive Analytics Layer: Applied machine learning models (logistic regression,
random forest classifiers) to predict student performance, detect at-risk learners, and
recommend personalized learning interventions.

— Decision Support Layer: Delivered actionable insights to instructors, administrators, and
students through dashboards and mobile applications.

Data Decision
Integration Support

Data aggregated Insights

into a centralized  delivered

platform through
dashboards

and apps

Al Analytics

Machine
learning
models applied
for predictions

Figure 2. Al- Driven Educational Insights Funnel

D. Evaluation Metrics
The effectiveness of the Al-powered analytics system was evaluated using the following metrics:

— Student Engagement: Measured by class attendance rates, LMS activity frequency, and in-class
participation.

— Academic Performance: Analyzed through comparative assessment scores between
participants in the pilot group and control groups.

— User Satisfaction: Evaluated using survey responses on system usability, inclusivity, and
perceived usefulness.
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— Operational Efficiency: Monitored through space utilization rates, energy consumption
reductions, and adaptive scheduling outcomes.

E. Ethical Considerations

All data collection procedures adhered to DLSU’s Institutional Review Board (IRB) ethical standards.
Student identities were anonymized, and participation in surveys was voluntary. The system was
designed with compliance to data privacy regulations in the Philippines, ensuring responsible handling
of personal and academic data.

RESULT AND DISCUSSION
A. Student Engagement

The implementation of Al-powered analytics demonstrated a positive effect on student engagement.
Attendance records collected via IoT-enabled classroom sensors indicated a 15% increase in average
attendance across pilot courses compared to the previous semester. LMS log data revealed a 22% rise
in online activity, including higher participation in discussion forums and increased frequency of
resource downloads. In-class engagement, measured through Al-supported real-time quizzes and polls,
improved by 18%, suggesting that predictive feedback mechanisms motivated students to actively
participate.

Table 1. Impact of Al-Powered Analytics on Student Engagement

Engagement Metric Baseline (Previous | After Al-Powered | Improvement
Semester) Implementation (%)

Average Attendance 72% 87% +15%

LMS Online Activity 1,000 interactions (logs) 1,220 interactions (logs) | +22%

In-Class Engagement 65% participation 83% participation +18%

(Quizzes & Polls)

B. Academic Performance

Al-driven predictive models successfully identified at-risk students with an accuracy rate of 87%.
Targeted interventions, such as personalized study recommendations and academic counseling, led to
measurable improvements. Students flagged as at-risk who received support improved their average
grades by 0.6 GPA points, while the overall dropout risk was reduced by 12%. These results align with
prior studies that emphasize the role of Al in early intervention and personalized learning.
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Figure 3. Impact of Al-Driven Predictive Models on Academic Performance
C. Usability and Student Perceptions
Survey results (N = 320) showed strong acceptance of the Al-powered analytics platform:

— Perceived Usefulness: 84% of students agreed that the system improved their learning
experience.

— Ease of Use: 78% found the interface intuitive and user-friendly.

— Inclusivity: 71% reported that the system addressed diverse learning needs, particularly through
personalized feedback.

100

80
71%
60

40

20

Percentage of Positive Responses (%)

0 Perceived Usefulness Ease of Use Inclusivity

Figure 4. Usability and Student Perceptions of Al-Powered Analytics

However, qualitative interviews highlighted some concerns. Students from low-income backgrounds
reported difficulties in accessing consistent internet connectivity, which limited their ability to fully
utilize online features. Faculty members expressed a need for additional training to interpret Al-
generated insights effectively, underscoring the importance of professional development in supporting
digital adoption.

D. Operational Efficiency and Campus Services

Beyond academics, the Al-powered system contributed to enhanced operational efficiency at DLSU.
Analysis of [oT data revealed that classroom utilization rates improved by 11% due to adaptive space
allocation, while energy usage decreased by 9% through Al-guided optimization of lighting and air
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conditioning. These improvements indirectly supported student well-being by providing more
comfortable learning environments.

Table 2. Impact of Al-Powered System on Operational Efficiency and Campus Services (DLSU Case
Study)

Metric Baseline (Before AI | After Al-Powered | Improvement
System) Implementation (%)

Classroom Utilization Rate | 68% 79% +11%

Energy Usage (Lighting & | 100% (reference) 91% —9%

HVAC)

Student Comfort (Survey | Moderate (baseline) High (post-implementation) Qualitative 1

Feedback)

E. Discussion

The findings confirm that Al-powered analytics can extend the role of smart campuses from
infrastructure optimization toward human-centered outcomes. At DLSU, the system not only improved
engagement and academic performance but also enhanced inclusivity and operational sustainability.
This aligns with global calls for universities to move beyond a purely technology-driven model toward
one that integrates human needs, well-being, and equity.

Nonetheless, challenges remain. Issues related to the digital divide highlight the necessity for
institutional policies that provide financial and technological support to underserved students. Similarly,
faculty readiness is a critical factor in ensuring that Al-generated insights are effectively integrated into
pedagogy. Addressing these socio-pedagogical factors is essential for scaling smart campus initiatives
in diverse higher education contexts.

CONCLUSION

This study examined the role of Al-powered analytics in shaping a human-centered smart campus at De
La Salle University (DLSU), Manila, Philippines. By integrating IoT sensor data, LMS activity logs,
and student feedback into a unified analytics framework, the system provided predictive insights that
enhanced student engagement, improved academic performance, and optimized campus operations. The
results showed measurable benefits, including a 15% increase in attendance, a 22% rise in LMS activity,
and a 12% reduction in dropout risk, demonstrating the potential of Al to foster adaptive and inclusive
learning environments. Beyond academics, Al-driven insights contributed to more efficient use of
resources, such as improved classroom utilization and reduced energy consumption, indirectly
enhancing student comfort and well-being. These findings highlight that the value of smart campus
technologies extends beyond operational efficiency to encompass human-centered outcomes—equity,
inclusivity, and student success. However, challenges related to digital equity, internet accessibility,
and faculty readiness must be addressed to ensure the sustainable and scalable adoption of Al-powered
systems. Institutions must invest in infrastructure, capacity building, and data governance policies that
balance technological innovation with ethical and inclusive practices. In conclusion, Al-powered
analytics can serve as both a technological enabler and a catalyst for building human-centered smart
campuses. Future research should extend this study by conducting longitudinal evaluations, cross-
institutional comparisons, and exploring emerging technologies such as digital twins and generative Al
to further advance the vision of equitable and sustainable higher education ecosystems.
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